Stereospecific Synthesis of the 2,3-trans-3,4-cis Trisubstituted Tetrahydrofuran Lignan (\pm)-Dihydrosesamin

David R. Stevens and Donald A. Whiting*
Chemistry Department, The University, Nottingham NG7 2RD, UK

It is shown that the stereochemistry of additions to the 3-arylidene lactones $\mathbf{3}$ and 9 is controlled by the 5 - rather than the 4 -substituent; synthesis of the 2,3-trans-3,4-cis lignan dihydrosesamin $11 \mathrm{~b}(\mathrm{R}=\mathrm{H})$ thus requires use of the 4,5 -cis- lactone 8 , in the sequence $8\left(R^{1}=\right.$ TBDMS, $R^{2}=$ TMS $) \rightarrow \mathbf{9 b} \boldsymbol{\rightarrow 1 0 b} \boldsymbol{\operatorname { 1 1 b }}$ ($\mathrm{R}=\mathrm{H}$), with epimerisation at C -2 following establishment of cis,cis geometry.

The natural lignans display a wide variety of constitution based on phenolic and O-heterocyclic substructures, and an equally wide range of biological activities are shown by a number of members. ${ }^{1}$ A major sub-group is comprised of tri- and tetrasubstituted tetrahydrofurans, and the synthesis of this type of compound poses interesting and often unsolved problems of stereocontrol. Following our recent work on the synthesis of 3,7-dioxabicyclo lignans, ${ }^{2}$ we turned our attention to (-)-dihydrosesamin 11. This lignan was isolated from Daphne tangutica Maxim., the Chinese drug 'Ai tuotuo' used in the treatment of rheumatism, etc. ${ }^{3}$ Dihydrosesamin has been obtained only by hydrogenation of natural sesamin. ${ }^{4}$ Related natural products are lariciresinol from a variety of conifers, and sanshodiol, from Xanthoxylum piperitum DC. ${ }^{5}$

In this paper, we report a total synthesis of racemic dihydrosesamin, employing the lactone alcohols 1 and $8,{ }^{2}$ available through borane reduction of the corresponding paraconic acids, ${ }^{6}$ based on elaboration through α-arylidene lactones. Thus, the (\pm)-trans lactone $1(R=T B D M S)$ was treated with trimethylsilyl triflate ${ }^{7}$ to yield the C-trimethylsilyl lactone 2 ($\mathrm{R}=$ TBDMS) (38% when purified chromatographically) which was converted by lithium diisopropylamide and benzaldehyde into the unsaturated lactone 3a ($\mathrm{R}=$ TBDMS) (57%) with the spectroscopic characteristics of an E-cinnamate. The arylidene lactones $\mathbf{3 a}(\mathrm{R}=\mathrm{H}$) and $\mathbf{3 b}$ ($\mathrm{R}=\mathrm{H}$) could also be prepared by reaction of $1(\mathrm{R}=\mathrm{H})$ with piperonal and benzaldehyde respectively, and sodium methoxide in benzene, ${ }^{8}$ in moderate yield. The stereochemistry of $3 \mathrm{a}(\mathrm{R}=\mathrm{H})$ was cheched by X-ray crystallography ${ }^{9}$ and was confirmed as 4,5-trans $3-E$. Hydrogenation of $3 \mathrm{~b}(\mathrm{R}=\mathrm{H})$ then afforded a single saturated lactone $\mathbf{4 b}(\mathrm{R}=\mathrm{H})$. It was expected that this product would have the 3,4 -cis, $-4,5$-trans stereochemistry with the direction of hydrogenation controlled by the adjacent 4 -substituent. However, subsequent chemistry demonstrated the $3,4-$ trans-4,5-trans geometry. Thus, reduction of the lactone $4 \mathrm{~b}(\mathrm{R}=\mathrm{H})$ followed by cyclisation in the acidic work-up gave two 2,3,4-trisubstituted tetrahydrofuran alcohols ($1: 1$), neither of which had spectroscopic data matching those of dihydrosesamin, and which were assigned structures $\mathbf{5 b}$ and $\mathbf{6 b}$ on the basis of their mode of preparation (Scheme 1). It was not possible to deduce with complete confidence which isomer had which stereochemistry from the data available from the very small samples. However it was clear that initial addition of hydrogen to the double bond had occurred from the β-face exclusively. Parallel results were obtained with the benzylidene lactone 3a $(\mathrm{R}=\mathrm{H})$. That this was not a hydrogen bonding effect was shown by hydrogenation of the unsaturated lactone as its trisisopropylsilyl derivative 3a $(\mathrm{R}=$ TIPS $)$ which gave the same stereochemical result, despite the bulkier silyl group.
A number of attempts were made to effect other additions to

Scheme 1 Reagents and conditions for all Schemes: i, TMSOTf, Et ${ }_{3} \mathrm{~N}$, THF, $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$; ii, LDA, THF, $-78^{\circ} \mathrm{C}$; ArCHO, $2 \mathrm{~h},-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$ room temp.; iii, H_{2}, EtOAc, $10 \% \mathrm{Pd}-\mathrm{C}$; iv, $\mathrm{LiAlH}_{4}, \mathrm{THF}$, reflux, $1 \mathrm{~h} ; 2 \mathrm{~mol}$ $\mathrm{dm}^{-3} \mathrm{HCl} ; \mathbf{v}, \mathrm{OsO}_{4}, \mathrm{NMMNO}, \mathrm{Bu} \mathrm{OH}^{\prime}-\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$; vi, TBAF, THF, room temp.; vii, $\mathrm{MeOH}-0.5 \% \mathrm{HCl}$, reflux, 1 h
the cinnamyl double bond in $3 \mathrm{a}(\mathrm{R}=\mathrm{H})$. However, this function proved surprisingly unreactive; the unsaturated lactone was recovered unchanged from treatment with m chloroperbenzoic acid (reflux chloroform, 7 days); benzeneselenenyl chloride (room temp., 7 days); mercuric trifluoroacetate (tetrahydrofuran, reflux, 7 days); 3,5-dinitroperbenzoic acid; hydrogen peroxide-sodium hydrogencarbonate; and sodium hypochlorite-pyridine. Finally, treatment of 3a ($\mathrm{R}=$ H) or 3b ($\mathrm{R}=\mathrm{H}$) with N-methylmorpholine N-oxide and catalytic osmium tetraoxide gave the single crystalline triols 7a and 7 b which were stable under acidic conditions expected to induce ring closure in a 3,4 -cis compound. Thus, the stereochemistry shown is implied, with addition again occurring at the β-face.

Scheme 2 Reagents and conditions: see Scheme 1

However the C-1 epimerisation observed in the conversion of $\mathbf{4 b} \rightarrow \mathbf{6 b}$ suggested that a successful sequence could be initiated from the cis-lactone 8. The α-arylidene lactone $9 b$ ($\mathrm{R}=$ TBDMS) was formed by the Peterson procedure as above, via $8\left(\mathrm{R}^{1}=\mathrm{TBDMS}, \mathrm{R}^{2}=\mathrm{H}\right)$ and $8\left(\mathrm{R}^{1}=\right.$ TBDMS, $\mathbf{R}^{2}=\mathrm{TMS}$) and hydrogenation proceeded smoothly to give the 3,4-cis-4,5-cis tetrahydrofuranone 10b (Scheme 2). Lithium aluminium hydride reduction of this lactone gave a diol which cyclised and was deprotected in isolation with aqueous acid and ethyl acetate, to afford (\pm)-dihydrosesamin $11 \mathrm{~b}(\mathrm{R}=\mathrm{H})$ and its acetate $11 \mathrm{~b}(\mathrm{R}=\mathrm{Ac})(34 \%)$. The ${ }^{1} \mathrm{H}$ NMR data of the alcohol and of its acetate agreed well with those reported in the literature. No 2,3-cis products were isolated.

In an effort to exploit this chemistry to form 3,7-dioxabicyclo[3.3.0]octane lignans, requiring cis tetrahydrofuran fusion, we effected hydroxylation of the arylidene lactone $9 \mathbf{9}$ ($\mathrm{R}=\mathrm{TBDMS}$) to the diol 12b. However, desilylation using tetrabutylammonium fluoride gave a triol which was clearly, from NMR spectroscopy, a 3,4-disubstituted tetrahydrofuranone rather than a 3,4,5-trisubstituted one. Rearrangement as in 15 is envisaged to lead to the 3,4-trans-triol 13b (Scheme 3).

Scheme 3 Reagents and conditions: see Scheme 1

In accord with this geometry, treatment of 13 b with acidic methanol did not induce ring closure but gave only the monomethyl ether 14b.* The structure and stereochemistry deduced on mechanistic grounds were confirmed by X-ray crystallo-

[^0]graphy. ${ }^{9}$ Anchimeric assistance to methanolysis by the 3hydroxy group at the further benzylic site, with retention of configuration, is proposed.

Experimental

All solvents were dried before use by standard methods. Petroleum means light petroleum, b.p. $40-60^{\circ} \mathrm{C}$. For other experimental generalisations see J. Chem. Soc. Perkin Trans. 1, 1991, 1901.
trans-4-(tert-Butyldimethylsilyloxymethyl)-5-(3,4-methylene-dioxyphenyl)dihydrofuran- $2(3 \mathrm{H})$-one.-The trans-lactone alcohol $1(\mathrm{R}=\mathrm{H})^{2}(3.24 \mathrm{~g})$, imidazole $(2.33 \mathrm{~g})$ and tert-butyldimethylsilyl chloride (2.5 g) were dissolved in dry dimethylformamide (50 ml) and the solution was stirred overnight. The mixture was diluted with aq. sodium hydrogencarbonate and extracted with petroleum ($4 \times 60 \mathrm{~cm}^{3}$). Drying, evaporation, and chromatography of the residue (ether-petroleum gradient) afforded the title compound $1(\mathrm{R}=\mathrm{TBDMS})(3.50 \mathrm{~g}, 73 \%)$, m.p. $57^{\circ} \mathrm{C}$ from hexane (Found: $\mathrm{C}, 61.7 ; \mathrm{H}, 7.8 \% ; \mathrm{M}^{+}-\mathrm{Bu}^{t}$ 293.087. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Si}$ requires $\mathrm{C}, 61.7 ; \mathrm{H}, 7.5 \% ; M-\mathrm{Bu}^{t}$ 293.085); $v_{\text {max }} / \mathrm{cm}^{-1} 1770,1500,1005,950,840$ and 785 ; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.07$ and 0.08 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}\right), 0.91$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}$), $2.56(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.62-2.67\left(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right)$, $3.66\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 4, \mathrm{CH}_{2} \mathrm{O}\right), 5.27(1 \mathrm{H}, \mathrm{d}, J 6.6,5-\mathrm{H}), 5.97(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right)$ and 6.78-6.82 (3 H, m, ArH).
trans-4-(tert-Butyldimethylsilyloxymethyl)-5-(3,4-methylene-dioxyphenyl)-3E-benzylidenedihydrofuran- $2(3 \mathrm{H})$-one.-The lactone 1 ($\mathrm{R}=$ TBDMS) (1.06 g) in tetrahydrofuran (THF) $\left(25 \mathrm{~cm}^{3}\right)$ under nitrogen at $0^{\circ} \mathrm{C}$ was treated with triethylamine ($1.26 \mathrm{~cm}^{3}$) and then trimethylsilyl trifluoromethanesulphonate $\left(1.46 \mathrm{~cm}^{3}\right)$. The mixture was stirred for 2 h . Ether $\left(50 \mathrm{~cm}^{3}\right)$ was added and the solution was washed with dil. hydrochloric acid, dried, and evaporated. Chromatography of the residue (etherpetroleum gradient) gave the title silyl lactone $2(\mathrm{R}=$ TBDMS) ($0.47 \mathrm{~g}, 38 \%$) as an oil (Found: M^{+}, 422.195. $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Si}$ requires $M, 422.195$). Lithium diisopropylamide was prepared from diisopropylamine $\left(0.18 \mathrm{~cm}^{3}\right.$) and butyl-lithium (1.4 mol dm^{-3} in hexane; $0.90 \mathrm{~cm}^{3}$) in THF ($25 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$. This solution was cooled to $-78^{\circ} \mathrm{C}$ and the lactone $2(\mathrm{R}=$ TBDMS $)(0.47 \mathrm{~g})$ in THF ($2 \mathrm{~cm}^{3}$) was added. The mixture was stirred for 15 min , when benzaldehyde (0.21 g) in THF ($1 \mathrm{~cm}^{3}$) was added. Stirring was continued for 2 h , when the mixture was allowed to warm to room temperature. The mixture was quenched with water and extracted with ether. The washed, dried, extracts were evaporated and the residue was chromatographed (ether-petroleum gradient) to yield the title compound 3a ($\mathrm{R}=$ TBDMS) ($0.27 \mathrm{~g}, 59 \%$), m.p. $97-98{ }^{\circ} \mathrm{C}$ from hexane (Found: C, 68.85; H, 7.25\%; $\mathrm{M}^{+}, 438.185 . \mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Si}$ requires C, $68.5 ; \mathrm{H}, 6.9 \% ; M, 438.186$); $v_{\text {max }} / \mathrm{cm}^{-1} 1740,1645,1495$, $1035,850,785$ and $695 ; \delta_{\mathbf{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.03$ and 0.05 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}$), $0.91\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 3.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right)$, 3.92 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), $5.59(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 4.94\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right)$, 6.78-6.79 (3 H, m, ArH) and 7.39-7.53 ($5 \mathrm{H}, \mathrm{Ph} \mathrm{H}$).
trans-4-Hydroxymethyl-5-(3,4-methylenedioxyphenyl)-3E-(3,4-methylenedioxybenzylidene)dihydrofuran- $2(3 \mathrm{H})$-one.-The hydroxymethyl lactone $1(\mathrm{R}=\mathrm{H})(4.0 \mathrm{~g})$, piperonal (3.80 g) and sodium methoxide $(2.01 \mathrm{~g})$ were stirred together in dry benzene ($80 \mathrm{~cm}^{3}$) overnight. Dilute sulfuric acid was added, and the mixture was stirred for a further 4 h . The organic layer was separated, dried, and evaporated; the residue was chromatographed (ethyl acetate-hexane gradient) to yield the title compound 3b $(\mathrm{R}=\mathrm{H})(2.1 \mathrm{~g}, 34 \%)$, m.p. $150^{\circ} \mathrm{C}$ from ethyl acetate-hexane (Found: C, 64.9; H, 4.4\%; $\mathrm{M}^{+}, 368.088$.
$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{7}$ requires $\mathrm{C}, 65.2 ; \mathrm{H}, 4.4 \% ; M, 368.090$); $v_{\max }(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3420,1715,1640,1610,1500,1455,1045,935$ and 825 ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz},\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $) 3.72(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, \mathrm{CH} \mathrm{HOH})$, $3.99(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} H \mathrm{OH}), 5.64(1 \mathrm{H}, \mathrm{d}, J 0.9,5-\mathrm{H}), 5.99(1 \mathrm{H}$, $\left.\mathrm{ABq}, J 0.9, \mathrm{OCH}_{2} \mathrm{O}\right), 6.08\left(1 \mathrm{H}, \mathrm{ABq}, J 0.9, \mathrm{OCH}_{2} \mathrm{O}\right), 6.81-7.24$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and $7.49(1 \mathrm{H}, \mathrm{d}, J 1.2, \mathrm{C}=\mathrm{CH}$).

The corresonding lactone $3 \mathrm{a}(\mathrm{R}=\mathrm{H})$ was made by a parallel method, and afforded the triisopropylsilyl derivative 3a ($\mathrm{R}=$ TIPS) using the method above for TBDMS derivatives; the compound was an oil (Found: $\mathrm{M}^{+}, 480.233 . \mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Si}$ requires $M, 480.233)$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.96\left(21 \mathrm{H}, \mathrm{s}, \mathrm{Pr}_{3}^{\mathrm{i}}\right)$, $3.60(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.64(1 \mathrm{H}, \mathrm{dd}, J$ 1.8, 9.2 , CHHOSi), 3.91 ($1 \mathrm{H}, \mathrm{dd}, J 3.5,9.2, \mathrm{CH} H \mathrm{OSi}), 5.57(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 5.83(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 6.65-6.73(\mathrm{ArH}), 7.27-7.30(2 \mathrm{H}, \mathrm{PhH}), 7.41-7.44$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{PhH})$ and $7.56(1 \mathrm{H}, \mathrm{d}, J 1.7, \mathrm{C}=\mathrm{CH})$.
4β-Hydroxymethyl-3 α-(3,4-methylenedioxybenzyl)-5 α-(3,4-methylenedioxyphenyl)dihydrofuran- $2(3 \mathrm{H})$-one. -The lactone 3b ($\mathrm{R}=\mathrm{H}$) (103.1 mg) in ethyl acetate ($5 \mathrm{~cm}^{3}$) was hydrogenated over palladium on carbon catalyst until all the starting material had reacted (TLC). Filtration, evaporation, and PLC (ethyl acetate-hexane, 1:1) gave the title compound $4 \mathrm{~b}(\mathrm{R}=\mathrm{H})(\mathbf{6 8 . 0} \mathrm{mg}, 66 \%)$, as a gum (Found: $\mathrm{M}^{+}, 370.105$. $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{7}$ requires $M, 370.105$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1765,1490$, 1445, 1040, 935, 815 and $735 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.17(1 \mathrm{H}$, br s, OH), 2.23 ($1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$), $2.95(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.4,8.4, \mathrm{CH} H \mathrm{Ar})$, 3.06-3.12 ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, \mathrm{CH} \mathrm{HAr}$), 3.42 ($1 \mathrm{H}, \mathrm{dd}, J 11.4,4.1$, $\mathrm{C} H \mathrm{HOH}), 3.53(1 \mathrm{H}, \mathrm{dd}, J 11.2,3.4, \mathrm{CH} H \mathrm{OH}), 5.14(1 \mathrm{H}, \mathrm{d}$, $J 9.0,5-\mathrm{H}$), 5.92 and 5.93 (each $2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}$), and 6.56-6.73 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).
3α-Benzyl-4 β-hydroxymethyl-5 α-(3,4-methylenedioxyphenyl)-dihydrofuran- $2(3 \mathrm{H})$-one.-The benzylidene lactone $3 \mathrm{a}(\mathrm{R}=\mathrm{H})$ (72.9 mg) was hydrogenated over palladium on carbon catalyst until all the starting material had reacted (TLC). Filtration, evaporation, and PLC (ethyl acetate-hexane, 1:1) gave the title compound $4 \mathrm{a}(\mathrm{R}=\mathrm{H})(71.8 \mathrm{mg}, \mathbf{9 8 \%})$, as a gum (Found: M^{+}, 326.116. $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{\mathrm{s}}$ requires $M, 326.115$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3460,1760,1490,1450,1040,995,810$ and $705 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 2.10(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.21(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.02(1 \mathrm{H}, \mathrm{m}$, CHHPh), 3.12-3.22 ($2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, \mathrm{CH} H \mathrm{Ph}$), 3.32 ($1 \mathrm{H}, \mathrm{dd}, J$ $11.3,4.0, \mathrm{CH} \mathrm{HOH}), 3.46(1 \mathrm{H}, \mathrm{dd}, J 11.3,3.3, \mathrm{CH} H \mathrm{OH}), 5.13$ $(1 \mathrm{H}, \mathrm{d}, J 9.2,5-\mathrm{H}), 5.91\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.53-6.77(3 \mathrm{H}, \mathrm{m}$, ArH) and 7.17-7.36 ($5 \mathrm{H}, \mathrm{m}, \mathrm{PhH}$).

3 β-Hydroxy-4 α,(3,4-methylenedioxybenzyl)-2 α-(3,4-methylenedioxyphenyl)tetrahydrofuran and 3β-Hydroxy- $4 \alpha-(3,4-$ methylenedioxybenzyl)-2 β-(3,4-methylenedioxyphenyl)tetrahy-drofuran.-The lactone $4(\mathrm{R}=\mathrm{H})(38.6 \mathrm{mg})$ was refluxed in THF ($5 \mathrm{~cm}^{3}$) with lithium aluminium hydride (20 mg) for 2 h . The mixture was poured into ethyl acetate and washed with dil. hydrochloric acid. The organic layer was collected, dried, and evaporated. PLC (ethyl acetate-hexane) gave two products, the tetrahydrofurans 5 b and $\mathbf{6 b}$. The higher R_{F} isomer (3.0 mg) had $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.59(1 \mathrm{H}, \mathrm{OH}), 1.95(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.45$ ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}$), 2.66 (1 H , dd, J 13.7, 8.4, CH HAr), 2.76 (1 H , dd, J 13.7, 6.9 , CHHAr), $3.62\left(2 \mathrm{H}, \mathrm{d}, J 5.5,5-\mathrm{H}_{2}\right.$), $3.82(1 \mathrm{H}, \mathrm{dd}, J$ 8.8, 6.0, С $H \mathrm{HOH}$), $3.94(1 \mathrm{H}, \mathrm{dd}, J .8 .8,7.3, \mathrm{CH} H \mathrm{OH}), 4.59$ $(1 \mathrm{H}, \mathrm{d}, J 8.0,2-\mathrm{H}), 5.93$ and 5.96 (each $2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}$) and 6.61-6.91 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

The lower $R_{\mathbf{F}}$ isomer (2.9 mg) (Found: $\mathbf{M}^{+}, 356.123$. $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{6}$ requires $M, 356.126$) had $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $1.59(1 \mathrm{H}, \mathrm{OH}), 2.08(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.41(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.63$ $(1 \mathrm{H}, \mathrm{dd}, J$ 13.8, 8.7, CH HAr), $2.79(1 \mathrm{H}, \mathrm{dd}, J 13.8,6.4$, CHHAr), 3.83 ($1 \mathrm{H}, \mathrm{dd}, J 8.9,6.0, \mathrm{CH} \mathrm{HOH}$), 3.93 ($1 \mathrm{H}, \mathrm{dd}, J$ $8.9,7.3, \mathrm{CH} H \mathrm{OH}), 4.07\left(2 \mathrm{H}, \mathrm{d}, J 5.5,5-\mathrm{H}_{2}\right), 4.52(1 \mathrm{H}, \mathrm{d}, J 8.1$, 2-H), 5.93 and $5.96\left(\right.$ each $\left.2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right)$ and $6.58-6.87(6 \mathrm{H}$, m, Ar-H).

3 β-Hydroxy-4 3 -hydroxymethyl- 3α-(α-hydroxy-3,4-methyl-enedioxybenzyl)-5 α-(3,4-methylenedioxyphenyl)dihydrofuran$2(3 \mathrm{H})$-one.-The arylidene lactone $\mathbf{3 b}(\mathrm{R}=\mathrm{H})(200.1 \mathrm{mg})$ was dissolved in tert-butyl alcohol-THF-water ($10: 3: 1 ; 10 \mathrm{~cm}^{3}$) and osmium tetroxide (6.9 mg in tert-butyl alcohol, $0.69 \mathrm{~cm}^{3}$) and N-methylmorpholine N-oxide (127 mg) were added. The solution was stirred for 10 days, when sodium metabisulfite $(1 \mathrm{~g})$ and water ($2 \mathrm{~cm}^{3}$) were added. After being stirred for a further 1 h , the mixture was added to ethyl acetate $\left(20 \mathrm{~cm}^{3}\right)$, which was then washed with brine. The aqueous layers were extracted again, and the combined organic layers were dried and evaporated. Purification of the product by PLC gave the title compound 7 b ($60.3 \mathrm{mg}, 28 \% ; 47 \%$ based on recovered starting material), m.p. $185^{\circ} \mathrm{C}$ from chloroform (Found: C, $59.9 ; \mathrm{H}, 4.4 \% ; \mathrm{M}^{+}, 402.093 . \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{9}$ requires $\mathrm{C}, 59.7 ; \mathrm{H}$, $4.5 \% ; M, 402.095) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3510-3340,1735,1490$, 1035, 930 and $820 ; \delta_{H}\left(250 \mathrm{MHz},{ }^{2} \mathrm{H}_{6}\right]$ acetone $) 2.76(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}), 4.06-4.08\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.17(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 4.53(1 \mathrm{H}$, $\mathrm{m}, \mathrm{OH}), 5.12(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOHAr}), 5.37(1 \mathrm{H}, \mathrm{d}, J 4.0, \mathrm{CHOHAr})$, $5.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.4,5-\mathrm{H}), 5.97$ and 6.03 (each $2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}$) and 6.73-6.96 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).
3β-Hydroxy-4 -hydroxymethyl-3 α-(α-hydroxybenzyl)-5 α-(3,-4-methylenedioxyphenyl)dihydrofuran- $2(3 \mathrm{H})$-one. -The benzylidene lactone $3 \mathrm{a}(\mathrm{R}=\mathrm{H})(87 \mathrm{mg})$ was treated with N methylmorpholine N-oxide and osmium tetroxide as in the previous experiment. Product isolation in a parallel fashion afforded the title compound $7 \mathrm{a}(39.0 \mathrm{mg}, 41 \%)$, m.p. $151-154^{\circ} \mathrm{C}$ from chloroform (Found: C, 63.4; H, 5.1\%; $\mathbf{M}^{+}, 358.107$. $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{7}$ requires $\mathrm{C}, 63.7 ; \mathrm{H}, 5.1 \% ; M, 358.105$); $v_{\text {max }}-$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3520-3340,1740,1490,1040,980$, and $825 ; \delta_{\mathrm{H}}(250$ $\mathrm{MHz},\left[{ }^{2} \mathrm{H}_{6}\right]$ acetone $) 2.78(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.08-4.11(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 4.21(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 4.56(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 5.19(1 \mathrm{H}, \mathrm{s}$, CHOHPh), 5.39 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$), $5.42(1 \mathrm{H}, \mathrm{d}, J 10.3,5-\mathrm{H}), 6.03$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.85-6.97(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.23-7.45(5 \mathrm{H}, \mathrm{m}$, PhH).
cis-4-Hydroxymethyl-5-(3,4-methylenedioxyphenyl)dihydro-furan- $2(3 \mathrm{H})$-one.-The cis-paraconic acid ${ }^{6}(4.00 \mathrm{~g})$ was dissolved in dry THF ($50 \mathrm{~cm}^{3}$) under nitrogen, and cooled to $0^{\circ} \mathrm{C}$. Borane-methyl sulfide ($2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in THF; 12.0 cm^{3}) was added over 10 min . The reaction mixture was stirred overnight and then was allowed to warm to room temperature. Methanol was added dropwise and the solution was then evaporated. The residue was partitioned between ethyl acetate and aq. sodium hydrogen bicarbonate. The organic layers were dried and evaporated to give a residue which was chromatographed (ethyl acetate-petroleum gradient) to yield the title compound $8\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}\right)(3.06 \mathrm{~g}, 81 \%)$ as a viscous oil (Found: $\mathbf{M}^{+}, 236.067 . \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5}$ requires $M, 236.069$); $\nu_{\max } / \mathrm{cm}^{-1} 3460,1790,1511,1050,945$, and $815 ; \delta_{\mathrm{H}}(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $1.86(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.63(1 \mathrm{H}, \mathrm{dd}, J 17.5,4.9$, $3-\mathrm{Ha}), 2.76(1 \mathrm{H}, \mathrm{dd}, J 17.5,8.3,3-\mathrm{Hb}), 2.86-2.93(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, 3.31-3.36 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}$), $5.60(1 \mathrm{H}, \mathrm{d}, J 6.8,5-\mathrm{H}$), $5.98(2 \mathrm{H}$, $\mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}$) and 6.74-6.82 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

This product formed a tert-butyldimethylsilyl derivative 8 ($\mathrm{R}^{1}=$ TBDMS, $\mathrm{R}^{2}=\mathrm{H}$) using the method above, m.p. $69^{\circ} \mathrm{C}$ from hexane (Found: C, 61.75; H, 7.7\%; $\mathbf{M}^{+}, 350.154$. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Si}$ requires $\mathrm{C}, 61.7 ; \mathrm{H}, 7.5 \% ; M, 350.155$); $v_{\text {max }}-$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 1755 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-0.09$ and -0.07 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\prime} \mathrm{Si}\right), 2.54-2.82\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right.$, $4-\mathrm{H}), 3.28-3.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OSi}\right)$, $5.56(1 \mathrm{H}, \mathrm{d}, J 6.3,5-\mathrm{H})$, $5.97\left(2 \mathrm{H}, \mathrm{ABq}, J 1.3, \mathrm{OCH}_{2} \mathrm{O}\right)$ and 6.72-6.84 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).
4β-(tert-Butyldimethylsilyloxymethyl)-5 3 -(3,4-methylenedi-oxyphenyl)-3x-trimethylsilyldihydrofuran-2(3H)-one.-The cislactone $8(\mathrm{R}=$ TBDMS $)(1.79 \mathrm{~g})$ in ether $\left(25 \mathrm{~cm}^{3}\right)$ under nitrogen at $0^{\circ} \mathrm{C}$ was treated with triethylamine ($1.64 \mathrm{~cm}^{3}$) and
trimethylsilyl trifluoromethanesulfinate ($2.07 \mathrm{~cm}^{3}$). After 1 h , ether ($50 \mathrm{~cm}^{3}$) and dil. hydrochloric acid were added. The organic fraction was washed with aq. sodium hydrogen carbonate, dried, and evaporated. The residue was chromatographed (ether-petroleum, 1:2) to provide the title compound 8 $\left(\mathrm{R}^{1}=\right.$ TBDMS, $\mathrm{R}^{2}=$ TMS $)(0.59 \mathrm{~g}, 27 \%)$ as a solid (M^{+}, 365.121. $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Si}_{2}-\mathrm{C}_{4} \mathrm{H}_{9}$ requires $M, 365.124$); $\delta_{\mathrm{H}}(90$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $-0.09\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.26\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 0.83$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{\mathrm{t}}$), $2.36(1 \mathrm{H}, \mathrm{d}, J 2.2,3-\mathrm{H}), 2.71(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, 3.15-3.24 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OSi}$), 5.42 ($1 \mathrm{H}, \mathrm{d}, J 7.0,5-\mathrm{H}$), 5.97 (2 H , $\left.\mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right)$ and 6.77-6.83 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).
4β-tert-Butyldimethylsilyloxymethyl-5 β-(3,4-methylenedioxy-phenyl)-3E-(3,4-methylenedioxybenzylidene)dihydrofuran-2(3H)-one.-LDA [from diisopropylamine ($0.22 \mathrm{~cm}^{3}$), 1.54 mmol) and butyl-lithium (1.54 mmol) in hexane] in THF ($20 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$ was treated with the silyl lactone $8(0.59 \mathrm{~g})$ in THF $\left(2 \mathrm{~cm}^{3}\right)$. After 15 min piperonal (0.23 g) in THF ($2 \mathrm{~cm}^{3}$) was added, and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and then was allowed to warm to $0^{\circ} \mathrm{C}$ over 1 h . Water was added followed by ether and brine; the organic layer was separated, washed, and dried. Evaporation and chromatography (etherpetroleum, 1:3) of the residue afforded the title compound 9 b ($\mathrm{R}=$ TBDMS) $\left(0.477 \mathrm{~g}, 60 \%\right.$), m.p. $167-168^{\circ} \mathrm{C}$ from hexane (Found: C, 64.6; H, 6.4\%; M^{+}, 482.177. $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{7}$ Si requires C, $64.7 ; \mathrm{H}, 6.3 \% ; M, 482.176)$; $\nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1745,1650$, $1490,1040,940,815$ and $780 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-0.24$ $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.73\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{\prime}\right)$, 3.41 ($1 \mathrm{H}, \mathrm{dd}, J 10.3,4.0$, CHHOSi), $3.60(1 \mathrm{H}, \mathrm{dd}, J 10.3,5.2, \mathrm{CH}$ HOSi), $3.74-3.79(1 \mathrm{H}$, $\mathrm{m}, 4-\mathrm{H})$, $5.53(1 \mathrm{H}, \mathrm{d}, J 6.4,5-\mathrm{H}), 5.96-5.97(2 \mathrm{H}, \mathrm{ABq}, J 1.4$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 6.01-6.02\left(2 \mathrm{H}, \mathrm{ABq}, J 1.3, \mathrm{OCH}_{2} \mathrm{O}\right), 6.77-7.15(6 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH})$ and $7.54(1 \mathrm{H}, \mathrm{d}, J 1.5, \mathrm{C}=\mathrm{CH})$.
4β-tert-Butyldimethylsilyloxymethyl-3 β-(3,4-methylenedioxy-benzyl)-5 5 -(3,4-methylenedioxyphenyl)dihydrofuran-2(3H)-one.-The arylidene lactone 9b ($\mathrm{R}=$ TBDMS $)(151.4 \mathrm{mg}$) was hydrogenated in ethyl acetate over 10% palladium on carbon using TLC monitoring. Filtration, evaporation and chromatography (ether-petroleum, $1: 4 \rightarrow 1: 3$) gave the title compound $10 b(R=$ TBDMS $)(112.8 \mathrm{mg}, 74 \%)$, m.p. $107^{\circ} \mathrm{C}$ from hexane (Found: C, 64.4; H, 6.9\%; \mathbf{M}^{+}, 484.190. $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{7} \mathrm{Si}$ requires C, 64.4; H, $6.7 \% ; M, 484.192)$; $\nu_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1760,1500$, $1450,1045,925,840$ and $785 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-0.18$ and -0.01 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), $0.92\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t} \mathrm{Si}\right), 2.52(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}), 2.84(1 \mathrm{H}, \mathrm{dd}, J 15.0,10.5$, CHHAr), $3.10(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}), 3.28$ ($1 \mathrm{H}, \mathrm{d}, J 10.8, \mathrm{C} H \mathrm{HOSi}$), 3.35 ($1 \mathrm{H}, \mathrm{dd}, J 15.0,3.4$, CHHAr), 3.57 ($1 \mathrm{H}, \mathrm{dd}, J 10.8,2.6, \mathrm{CH} H \mathrm{OSi}$), 5.43 ($1 \mathrm{H}, \mathrm{d}, J$ $5.4,5-\mathrm{H}), 5.94\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{2} \mathrm{O}\right), 6.71-6.79(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $6.93(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$.

Dihydrosesamin and Dihydrosesamin Acetate.-The lactone 10b ($\mathrm{R}=$ TBDMS) (91 mg), lithium aluminium hydride (60 mg), and THF ($5 \mathrm{~cm}^{3}$) were refluxed together for 1 h . Ethyl acetate was added followed by dil. hydrochloric acid. The organic extracts were dried and evaporated and the residue was chromatographed (ether-petroleum gradient) to yield dihydrosesamin $11 \mathrm{~b}(\mathrm{R}=\mathrm{H})(17.2 \mathrm{mg}, \mathbf{2 6} \%)$ and its acetate 11 b ($\mathrm{R}=\mathrm{Ac}$) $(6.2 \mathrm{mg}, 8 \%)$, as colourless oils. The former (Found: $\mathrm{M}^{+}, 356.127 . \quad \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{6}$ requires $M, 356.126$) showed $v_{\text {max }} / \mathrm{cm}^{-1} 3380,1610,1500,1440,1110,1030$ and 950 ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.67(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.35(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$, 2.52 ($1 \mathrm{H}, \mathrm{dd}, J 13.5,10.4, \mathrm{CH} \mathrm{HAr}), 2.69(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.87$ ($1 \mathrm{H}, \mathrm{dd}, J 13.5,5.2$, CHHAr), 3.71 ($1 \mathrm{H}, \mathrm{dd}, J 8.6,6.5,5-\mathrm{H}$), 3.74 ($1 \mathrm{H}, \mathrm{dd}, J 12.6,6.5$, CHHOH), 3.88 ($1 \mathrm{H}, \mathrm{dd}, J 10.8,6.9$, $\mathrm{CH} H \mathrm{OH}), 4.04(1 \mathrm{H}, \mathrm{dd}, J 8.5,6.6,5-\mathrm{H}), 4.79(1 \mathrm{H}, \mathrm{d}, J 6.2$, 2-H), 5.93 and 5.94 (each $2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}$) and 6.62-6.83 (6 H , $\mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 33.3,42.3,52.6,60.9,72.9$, $82.9,100.9,101.0,106.3,108.1,108.3,108.9,119.1,121.4$, 134.2, 137.1, 146.0, 147.7, 147.8 and 147.9 .

The latter (Found: M^{+}, 398.134. $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{7}$ requires M, 398.134) showed $v_{\max } / \mathrm{cm}^{-1} 1725,1480,1430,1120$ and 930 ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 2.47-2.54(2 \mathrm{H}, \mathrm{m}$, CHHAr, $4-\mathrm{H}), 2.69(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.80(1 \mathrm{H}, \mathrm{dd}, J 13.4,5.0$, CHHAr), $3.71(1 \mathrm{H}, \mathrm{dd}, J 8.6,6.9,5-\mathrm{Ha}), 4.05(1 \mathrm{H}, \mathrm{dd}, J 8.6$, $6.6,5-\mathrm{Hb}), 4.15(1 \mathrm{H}, \mathrm{dd}, J 11.2,7.5, \mathrm{CH} \mathrm{HOAc}), 4.31(1 \mathrm{H}, \mathrm{dd}$, $J 11.2,4.3, \mathrm{CH} H \mathrm{OAc}), 4.76(1 \mathrm{H}, \mathrm{d}, J 6.1,2-\mathrm{H}), 5.93$ and 5.94 (each $2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}$), $6.60-6.81(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(400 \mathrm{MHz}$, CDCl_{3}) 21.0, 33.3, 42.4, 49.2, 62.7, 72.8, 83.1, 101.0, 101.1, 106.3, 108.1, 108.4, 108.9, 119.2, 121.5, 133.8, 136.6, 146.1, 147.1, 147.9 and 171.0.
4β-tert-Butyldimethylsilyloxymethyl- $3 \alpha-$ hydroxy -3β - $(\alpha-$ hy -droxy-3,4-methylenedioxybenzyl)-5 β-(3,4-methylenedioxy-phenyl)dihydrofuran-2(H)-one.-The arylidene lactone 9b $(\mathrm{R}=$ TBDMS $)(106.9 \mathrm{mg})$ was dissolved in tert-butyl alcohol-THF-water ($10: 3: 1 ; 10 \mathrm{~cm}^{3}$) and osmium tetroxide (2.8 mg in tert-butyl alcohol, $0.28 \mathrm{~cm}^{3}$) and N -methylmorpholine N -oxide (52 mg) were added. The solution was stirred for 17 days at room temperature, and the product was isolated as in the preceding experiment, using chromatography (ether-petroleum, $1: 3 \rightarrow 1: 1$) to provide the title diol $12 \mathrm{~b}(70.8 \mathrm{mg}, 62 \%)$, m.p. $188-$ $190^{\circ} \mathrm{C}$ from hexane containing a little chloroform (Found: C, $60.5 ; \mathrm{H}, 6.4 \quad \mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{9} \mathrm{Si}$ requires $\mathrm{C}, 60.45 ; \mathrm{H}, 6.2 \%$); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3500,3445,1770,1490,1040,940,815,775$ and $705 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-0.25$ and -0.05 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), $0.95(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{Si}), 2.39(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.16(1 \mathrm{H}, \mathrm{d}, J 10.9$, CHHOSi), 3.33 ($1 \mathrm{H}, \mathrm{dd}, J 10.9,2.4, \mathrm{CH} H \mathrm{OSi}), 4.14$ ($1 \mathrm{H}, \mathrm{d}, J$ 2.7, CHOHAr), 4.25 ($1 \mathrm{H}, \mathrm{s}, 3-\mathrm{OH}$), 5.23 ($1 \mathrm{H}, \mathrm{d}, J 2.3$, CHOHAr), $5.96-5.99\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2} \mathrm{O}\right), 6.03(1 \mathrm{H}, \mathrm{d}, J 5.2$, $5-\mathrm{H})$ and $6.75-7.06(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.
3α-Hydroxy-3 $3,4 \alpha$-bis(α-hydroxy-3,4-methylenedioxybenzyl)-dihydrofuran-2(3H)-one.-The diol 12b (58.0 mg) in THF (10 cm^{3}) was treated with tetrabutyl ammonium fluoride (1.0 mol dm^{3} in THF; $0.34 \mathrm{~cm}^{3}$). The solution was stirred overnight. The solution was evaporated to dryness and the residue was dissolved in methanol ($10 \mathrm{~cm}^{3}$) containing conc. hydrochloric acid (2 drops). After 1 h at room temperature the solution was evaporated and the residue was chromatographed (etherpetroleum gradient) to yield the title triol $13 \mathrm{~b}(25.6 \mathrm{mg}, 59 \%)$ as an amorphous solid (Found: $\mathrm{C}, 60.0 ; \mathrm{H}, 4.9 . \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{9}$ requires C, $59.7 ; \mathrm{H}, 4.5 \%)$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.26(1 \mathrm{H}, \mathrm{br}$ s , OH), $2.66(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.33(1 \mathrm{H}, \mathrm{dd}, J 8.2,9.4,5-\mathrm{Ha}), 3.70$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.24(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.26(1 \mathrm{H}, \mathrm{dd}, J 9.4,5.1$, $5-\mathrm{Hb}), 4.91(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOHAr}), 4.93\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CHOHAr}{ }^{\prime}\right), 5.03$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 5.92$ and 5.93 (each $2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}$) and $6.65-$ 6.97 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).
3α-Hydroxy-3 β-(α-hydroxy-3,4-methylenedioxybenzyl)-4 $\alpha(\alpha-$ methoxy-3,4-methylenedioxybenzyl)dihydrofuran-2(3H)-one.The previous experiment was repeated using the diol prepared as above from the lactone $9(165.4 \mathrm{mg})$; the methanolic hydrochloric acid solution was this time refluxed for 1 h . Product isolation in the same way yielded the title methoxy diol 14b ($55.5 \mathrm{mg}, 39 \%$), m.p. $172-173{ }^{\circ} \mathrm{C}$) (Found: C, 60.0 ; H, 4.9%; M^{+}, 384.083. $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{9}$ requires $\mathrm{C}, 60.6 ; \mathrm{H}, 4.8 \% ; M, 384.085$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3470,3000,1750,1490,1040,930$ and 815 ; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.68(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.58(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$, $3.25(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.36(1 \mathrm{H}, \mathrm{dd}, J 9.4,7.9,5-\mathrm{Ha}), 4.30(1 \mathrm{H}$, dd, $J 9.4,5.1,5-\mathrm{Hb}), 4.33(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.52(1 \mathrm{H}, \mathrm{d}, J 2.8$, CHOMeAr), 4.90 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHOHAr}$), $5.95(2 \mathrm{H}, \mathrm{ABq}, J 1.4$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 5.97\left(2 \mathrm{H}, \mathrm{ABq}, J 1.4, \mathrm{OCH}_{2} \mathrm{O}\right)$ and $6.65-6.98(6 \mathrm{H}$, m, ArH).

References

1 D. A. Whiting, Nat. Prod. Rep., 1985, 2, 191; 1987, 4, 499; 1990, 7, 349;
G. M. Massanet, E. Pando, F. Rodriguez-Luis and E. Zubia, Fitotherapia, 1989, LX, 3.
2 C. P. Till and D. A. Whiting, J. Chem. Soc., Chem. Commun., 1984, 590; D. R. Stevens and D. A. Whiting, Tetrahedron Lett., 1986, 27, 4629; D. R. Stevens, C. P. Till and D. A. Whiting, J. Chem. Soc., Perkin Trans. 1, 1992, 185.
3 Z. Lin-gen, O. Seligman, H. Lotter and H. Wagner, Phytochemistry, 1983, 22, 265.
4 K. Takahashi, Y. Hayashi and M. Takani, Chem. Bull. Pharm., 1970, 18, 421; K. Weinges, Chem. Ber., 1961, 94, 2522.
5 R. D. Haworth and W. Kelly, J. Chem. Soc., 1937, 348; F. Abe, S. Yahara, K. Kubo, G. Nonaka, H. Okabe and I. Nishioka, Chem. Pharm. Bull., 1974, 22, 2650.

6 J. M. Lawlor and M. B. McNamee, Tetrahedron Lett., 1983, 2211.
7 T. Uematsu, N. Matsuo and Y. Sanemitsu, Agric. Biol. Chem., 1984, 48, 2477.
8 H. Zimmer and J. Rothe, J. Org. Chem., 1959, 5, 359.
9 We thank Dr M. J. Begley for this information; full details will be published elsewhere.
10 D. R. Stevens and D. A. Whiting, J. Chem. Soc., Perkin Commun., 1990, 425.

Paper 1/04941K
Received 25th September 1991 Accepted 21st October 1991

[^0]: * The configurations of $\mathbf{1 3 b}$ and 14 b were incorrectly shown in a preliminary publication. ${ }^{10}$

